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Abstract

The unsteady mixed convection in the stagnation flow on a heated vertical plate is studied where the unsteadiness is

caused by the impulsive motion of the free stream velocity and by sudden increase in the surface temperature (heat flux).

The short time as well as the long time solutions are included in the analysis. Both prescribed surface temperature and

prescribed surface heat flux conditions are considered. The partial differential equations governing the flow and the heat

transfer have been solved numerically using an implicit finite difference scheme. Also, the asymptotic behaviour of the

solution for large value of the independent variable is examined when the flow becomes steady. There is a smooth

transition from the small-time solution to the large-time solution. The surface shear stress and the heat transfer increase

with time and buoyancy parameter. The heat transfer increases with the Prandtl number, but the surface shear stress

decreases. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The combined forced and free convection flow

(mixed convection flow) is encountered in many tech-

nical and industrial applications which include solar

central receivers exposed to wind currents, electronic

devices cooled by fans, nuclear reactors cooled during

emergency shutdown and heat exchangers placed in a

low-velocity-environment. The two-dimensional stag-

nation flow in a forced convection refers to the flow in

the vicinity of a stagnation line that results from a two-

dimensional flow impinging on a surface at right angles

and flowing there after symmetrically about the stag-

nation line. Hiemenz [1] studied the two-dimensional

stagnation flow and Eckert [2] considered the corre-

sponding heat transfer problem. The mixed convection

in stagnation flow is important when the buoyancy

forces due to the temperature difference between the

surface and the free stream become large. Consequently,

both the flow and thermal fields are significantly affected

by the buoyancy forces. Ramachandran et al. [3] have

investigated the mixed convection flow in the stagnation

region of a vertical plate. The above studies deal with

steady flows. In several problems the flow may be un-

steady which might be caused by the change in the free

stream velocity or in the surface temperature (surface

heat flux) or in both.

When there is an impulsive change in the velocity

field, the inviscid flow is developed instantaneously, but

the flow in the viscous layer near the wall is developed

slowly which becomes fully developed steady flow after

sometime. For small time the flow is dominated by the

viscous forces and the unsteady acceleration, but for

large time it is dominated by the viscous forces, the

pressure gradient and the convective acceleration. For

small time the flow is generally independent of the

conditions far upstream and at the leading edge or at the

stagnation point and for large time the flow depends on

these conditions. The mathematical problem for short

time is governed by the Rayleigh type of equation and

for large time by the Falkner–Skan type of equation.

The boundary layer flow development of a viscous

fluid on a semi-infinite flat plate due to the impulsive
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motion of the free stream has been investigated by

Stewartson [4,5], Hall [6], Dennis [7] and Watkins [8].

The corresponding problem over a wedge has been

studied by Smith [9], Nanbu [10] and Williams and

Rhyne [11].

Ece [12] has studied the flow development of the

laminar boundary layer on an impulsively started

translating and spinning rotational symmetric body, and

the temporal development of the thermal boundary

layer has been considered by Ozturk and Ece [13]. In

both cases, the series solutions were obtained. Kumari

[14] has examined the temporal development of mo-

mentum and thermal boundary layers on an impulsively

started wedge with a magnetic filed and has obtained the

solution numerically starting from the initial steady-

state to the final steady-state.

Brown and Riley [15] have presented an analysis that

covers three distinct phases in the temporal development

of the free convection flow past a suddenly heated semi-

infinite vertical plate. The unsteadiness in the flow field

arises due to the step-change in wall temperature. In the

initial stage one-dimensional flow describes the flow and

a local solution describes the early stage of the departure

from this. Finally, an asymptotic solution describes the

manner in which the final steady-state is reached. Ing-

ham [16] has considered essentially the same problem as

that of Brown and Riley [15], but instead of taking the

step-change in wall temperature, the wall temperature

T1 is suddenly raised to Tw ¼ T1 þ Axm, where A is a

positive constant, m is a constant and x is the distance

measured from the leading edge of the plate. Both nu-

merical and asymptotic solutions were obtained. It is

found that the numerical solutions match the large- and

small-time asymptotic solutions when the temperature

increases along the length of the plate. However, no

matching of these asymptotic solutions is found when

the wall temperature decreases along the plate.

The mixed convection flow at a two-dimensional

stagnation point on a heated horizontal boundary was

investigated by Amin and Riley [17]. The forced flow is a

stagnation point flow and the free convection part is due

to a pressure gradient that is induced by temperature

variations along the boundary. They have identified

situations in which a steady flow can be maintained.

The aim of this analysis is to study the development

of flow and heat transfer in the stagnation flow on a

heated vertical plate in the presence of buoyancy forces.

The unsteadiness in the flow field is caused by impul-

sively creating motion in the free stream and at the same

time suddenly raising the surface temperature (heat flux)

above its surroundings. The problem is formulated in

such a way that at t ¼ 0 it is represented by the Rayleigh

type of equation and for t ! 1 it is represented by the

Hiemenz type of equation. The partial differential

Nomenclature

a; b; c constants

A1;A2;A3 arbitrary constants

c0; c1; c2; c3 constants

cf skin friction coefficient

f dimensionless stream function

g gravitational acceleration

Grx;Gr�x Grashof numbers for the

prescribed surface temperature

(PST) and the prescribed heat

flux (PHF) cases, respectively.

k thermal conductivity

m; n constants

Nu Nusselt number

Pr Prandtl number

qw surface heat transfer

Rex Reynolds number

s1; s2; s3; s4 constants

t; t� dimensional and dimensionless

times, respectively

T temperature

u; v velocity components along x and y

directions, respectively

x; y distances along and normal to the

surface

Greek symbols

a thermal diffusivity

b coefficient of volumetric thermal

expansion

b1 constant

g pseudo-similarity variable

h dimensionless temperature

k1; k2 buoyancy parameters for

PST and PHF cases,

respectively

l coefficient of viscosity

m kinematic viscosity

n dimensionless time

Subscripts

e;w;1 conditions at the edge of the

boundary layer, at the surface,

and in the free stream,

respectively.

t; x; y derivatives with respect to t; x and

y, respectively

Superscript
0 denotes derivative with respect

to g
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equations governing the flow and the heat transfer have

been solved numerically using the implicit finite-differ-

ence scheme [18]. Particular cases of the present results

are compared with those of Ramachandran et al. [3].

2. Analysis

Let us consider a semi-infinite vertical plate which is

placed in an ambient fluid with uniform temperature T1.

At t ¼ 0 the ambient fluid is impulsively moved with a

velocity ue and at the same time the surface temperature

or heat flux is suddenly raised. Fig. 1 shows a flow field

over a heated vertical surface where the upper half of the

flow field is assisted by the buoyancy force, but the lower

part is opposed by the buoyancy force. The reverse trend

appears if the plate is cooled below. The results pre-

sented here are valid for both cases. The surface of the

plate is assumed to have an arbitrary temperature or it is

subjected to an arbitrary heat flux. Under the above

assumptions along with Boussinesq approximation, the

unsteady laminar boundary layer equations governing

the mixed convection flow are given by [3]

ux þ vy ¼ 0; ð1Þ
ut þ uux þ vuy ¼ ueðueÞx þ muyy þ gbðT 	 T1Þ; ð2Þ
Tt þ uTx þ vTy ¼ aTyy : ð3Þ

The initial conditions are

uðx; yÞ ¼ vðx; yÞ ¼ 0; T ðx; yÞ ¼ T1 for t < 0: ð4Þ
The boundary conditions for t P 0 are

uðx;0Þ¼ vðx;0Þ¼ 0; uðx;1Þ¼ ue ¼ ax; a> 0;

T ðx;1Þ¼ T1; T ðx;0Þ¼ TwðxÞ¼ bxn; b> 0; nP 0

for prescribed surface temperature ðPST caseÞ;

	K
oT ðx;0Þ

oy
¼ qwðxÞ¼ cxn; c> 0

for prescribed surface heat flux ðPHF caseÞ: ð5Þ

The index n ¼ 0 for constant surface temperature (heat

flux) and n ¼ 1 for linear surface temperature (heat flux).

It may be remarked that we encounter certain diffi-

culties in formulating the problem of boundary layer

development due to the impulsive motion. For small-

time solution we can use the scale R ¼ y=ðmtÞ1=2,
t� ¼ uet=x and for large-time solution we can use the

scale g ¼ yðue=mxÞ1=2, t� ¼ uet=x. If the problem is for-

mulated in (R; t�) system, the short-time solution fits in

properly, but the large-time solution does not fit. This

implies that we have to find a scaling of the y-coordinate

which behaves like y=ðmtÞ1=2 for small time and as

yðue=mxÞ1=2 for large time. Further it is convenient to

choose time scale n so that the region of time integration

may become finite. Such transformations have been

found by Williams and Rhyne [11] and they are given by

g ¼ ða=mÞ1=2yn	1=2; n ¼ 1	 expð	t�Þ;
t� ¼ at; a > 0; uðx; y; tÞ ¼ axf 0ðg; nÞ;
vðx; y; tÞ ¼ 	ðamÞ1=2n1=2f ðg; nÞ;
T ðx; y; tÞ ¼ T1 þ ðTw 	 T1Þhðg; nÞ ðPST caseÞ;
T ðx; y; tÞ ¼ T1 þ ða=mÞ	1=2ðqw=kÞhðg; nÞ ðPHF caseÞ;
Pr ¼ m=a; k1 ¼ Grx=Re2x ; Grx ¼ gbðTw 	 T1Þx3=m2;
Rex ¼ ax2=m; k2 ¼ Gr�x=Re

5=2
x ; Gr�x ¼ gbqwx4=km2:

ð6Þ

Using (6) in (1)–(3), we find that (1) is identically satis-

fied and (2) and (3) reduce to

f 000 þ 2	1gð1	 nÞf 00 þ nff 00 þ nð1	 f 02Þ þ knh

¼ nð1	 nÞ of
0

on
; ð7Þ

h00 þ 2	1Prgð1	 nÞh0 þ Prnðf h0 	 nf 0hÞ

¼ Prnð1	 nÞ oh
0

on
; ð8Þ

where k ¼ k1 for the PST case and k ¼ k2 for the PHF

case. Also k1ðk2Þ > 0 for the buoyancy assisting flow and

k1ðk2Þ < 0 for the buoyancy opposing flow. The

boundary conditions (5) reduce to

f ð0; nÞ ¼ f 0ð0; nÞ ¼ 0; f 0ð1; nÞ ¼ 1;

hð1; nÞ ¼ 0; hð0; nÞ ¼ 1 ðPST caseÞ;
h0ð0; nÞ ¼ 	1 ðPHF caseÞ:

ð9Þ

It may be noted that the buoyancy parameters k1 and k2

are the functions of streamwise distance x unless the

surface temperature (Tw 	 T1) and the surface heat flux

(qw) vary linearly with x (i.e., n ¼ 1). For n ¼ 1, k1 and

k2 are constants. In particular, if b ¼ c ¼ gba2, then

k1 ¼ k2 ¼ 1. Hence for the self-similar solution both

Tw 	 T1 and qw should vary linearly with x (i.e., n ¼ 1).

For n 6¼ 1, the equations are locally self-similar.

Eqs. (7) and (8) are coupled nonlinear parabolic

partial differential equations, but for n ¼ 0; ðt� ¼ 0Þ and
n ¼ 1ðt� ! 1Þ they reduce to ordinary differential

equations. For n ¼ 0, (7) and (8) reduce toFig. 1. The flow model and the coordinate system.
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f 000 þ 2	1gf 00 ¼ 0; ð10Þ
h00 þ 2	1Prgh0 ¼ 0: ð11Þ
For n ¼ 1, (7) and (8) reduce to

f 000 þ ff 00 þ 1	 f 02 þ kh ¼ 0: ð12Þ
h00 þ Prðf h0 	 nf 0hÞ ¼ 0: ð13Þ

The boundary conditions for (10)–(13) are

f ð0Þ ¼ f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 1; hð1Þ ¼ 0;

hð0Þ ¼ 1 ðPST caseÞ; h0ð0Þ ¼ 	1 ðPHF caseÞ:
ð14Þ

Eqs. (10) and (11) are uncoupled linear equations and

(12) and (13) are coupled nonlinear equations. Eqs. (10)

and (11) under conditions (14) admit closed form solu-

tions which are given by

f ¼ gerfðg=2Þ 	 ðpÞ	1=2½1	 expð	g2=4Þ�;
h ¼ erfcðPr1=2g=2Þ ðPST caseÞ; ð15aÞ
h ¼ ðP=PrÞ1=2erfcðPr1=2g=2Þ ðPHF caseÞ:

Hence

f 00ð0Þ ¼ ðPÞ	1=2
; h0ð0Þ ¼ 	ðPr=PÞ1=2: ð15bÞ

Eqs. (12) and (13) do not admit closed form solutions.

Eqs. (7) and (8) under conditions (9) for n ¼ 1 (steady

case) are identical to those of Ramachandran et al. [3].

Also (7) under conditions (9) for k ¼ 0 (forced convec-

tion flow) is the same as that of Williams and Rhyne [11]

if we put m ¼ 1 in their equation.

For prescribed surface temperature or heat flux, the

skin friction coefficient on the surface can be expressed as

cf ¼ 2l
ou
oy

� �
y¼0

,
qu2e

¼ 2n	1=2Re	1=2
x f 00ðn; 0Þ; n > 0: ð16aÞ

Similarly, the heat transfer coefficient in terms of the

Nusselt number for the PST case can be written as

Nu ¼ oT
oy

� �
y¼0

x

,
ðTw 	 T1Þ

¼ 	Re1=2x n	1=2h00ðn; 0Þ; n > 0: ð16bÞ

For the PHF case, the Nusselt number can be expressed

as

Nu ¼ Re1=2x n	1=2=hðn; 0Þ; n > 0: ð16cÞ

3. Asymptotic solution

In this section, we examine the asymptotic behaviour

of the solutions of (12) and (13) under conditions (14)

for large gðg ! 1Þ. As g ! 1; f 0 ! 1; h ! 0. Hence

we set

f ¼ g 	 b1 þ f1; h ¼ h1; b1 ¼ lim
g!1

ðg 	 f Þ; ð17Þ

where f1 and h1 are small so that their squares and

products can be neglected. Using (17) in (12) and (13),

we get

f 000
1 þ ðg 	 b1Þf 00

1 	 2f 0
1 þ kh1 ¼ 0; ð18Þ

h00
1 þ Prðg 	 b1Þh0

1 	 nh1 ¼ 0: ð19Þ

The boundary conditions on f1 and h1 as g ! 1 are

given by

f1 ¼ f 0
1 ¼ h1 ¼ 0 as g ! 1: ð20Þ

The solution of (18) and (19) under conditions (20) can

be expressed in terms of parabolic cylinder function

[19]

h1 ¼ A1 exp
�
	 ðPr þ 1ÞPrn2=4

�
ðPrnÞ	m


 1

"
	 mðmþ 1Þ

2ðPrnÞ2
þ Oðn	4Þ

#
; ð21aÞ

f 0
1 ¼ A2 expð	n2=2Þn	3 1

�
	 6n	2 þ Oðn	4Þ

�
þ A1k exp

�
	 ðPr þ 1ÞPrn2=4

�
ðPrnÞ	m


 c0
h

þ c1ðPrnÞ	2 þ Oðn	4Þ
i
; ð21bÞ

where

n ¼ g 	 b1; m ¼ ðnþ 2	1ÞPr þ 2	1;

c0 ¼ 2	1mðm
�

þ 1Þs2 þ s4
�
=ðs2s3 	 s1s4Þ;

c1 ¼ 2	1mðm
�

þ 1Þs1 þ s3
�
=ðs1s4 	 s2s3Þ;

s1 ¼ 2	1 ð2m½ 	 1ÞPrðPr þ 1Þ 	 ðmþ 2Þ�; ð21cÞ
s2 ¼ 2	2Pr	1ðPr þ 1Þ PrðPr½ þ 1Þ 	 2�;
s3 ¼ mðmþ 1ÞPr2;
s4 ¼ 2	1ð2mþ 3ÞPrðPr þ 1Þ 	 ðmþ 4Þ: ð21dÞ

For n ¼ 0 (constant surface temperature or heat

flux)

h1 ¼ 	A3ðPrnÞ	1
expð	Prn2=2Þ


 1
h

þ ðPrn2Þ	1 þ Oðn	4Þ
i
; ð22aÞ

f 0
1 ¼ A2 expð	n2=2Þn	3 1

�
	 6n	2 þ Oðn	4Þ

�
þ A3k expð	Prn2=2Þ


 c2ðPrnÞ	1
h

þ c3ðPr2n3Þ	1 þ Oðn	5Þ
i
; ð22bÞ

where

c2 ¼ ð3Pr þ 1Þ= Prð3Pr½ 	 5Þ�;
c3 ¼ 	ð3Pr 	 1Þ= ðPr½ 	 1Þð3Pr 	 5Þ�;
Pr 6¼ 1 and 5=3: ð22cÞ

It is evident from the above equations that f 0
1 and h1

tend to zero in an exponential manner as g ! 1. Hence

f 0 and h tend to 1 and 0, respectively, as g ! 1.
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4. Method of solution

Eqs. (7) and (8) under conditions (9)–(13) are solved

numerically using an implicit finite-difference scheme

similar to that of Blottner [18]. The first-order deriva-

tives with respect to n are replaced by two-point back-

ward difference formulae of the form

oS
on

¼ Sm;nð 	 Sm	1;nÞ=Dn; ð23Þ

where S represents any dependent variable and m and n

are the node locations along n and g directions, respec-

tively. First the third-order differential equation (7) is

converted into second-order equation by substituting

f 0 ¼ h. The second-order equation for h is descretized

using three-point central difference formulae while all

first-order differential equations are descretized by using

the trapezoidal rule. At each line of constant n, a system

of algebraic equations is obtained. The nonlinear terms

are evaluated at the previous iteration and the algebraic

equations are solved iteratively by using the well known

Thomas algorithm (see Blottner [18]). The same pro-

cedure is repeated for the next n value and the problem is

solved line by line until n ¼ 1 is reached. A convergence

criterion based on the relative difference between the

current and the previous iterations is employed. When

this difference reaches 10	5, the solution is assumed to

have converged and the iterative process is terminated.

We have also examined the effect of the grid size Dg
and Dn, and the edge of the boundary layer g1 on the

solution. The results presented here are independent of

the grid size and g1 at least upto the fourth decimal

place.

The numerical results presented here employed

Dg ¼ 0:02, Dn ¼ 0:005, and g1 ¼ 8.

5. Results and discussion

In order to validate our results, we have compared

the surface shear stress (f 00ðn; 0Þ) and the surface heat

transfer (	h0ðn; 0Þ or 1=hðn; 0Þ) for the prescribed surface

temperature and heat flux when n ¼ 1 with those of

Ramachandran et al. [3]. Also for k ¼ 0 (no buoyancy

force) we have compared our surface shear stress

(f 00ðn; 0Þ) with that of Williams and Rhyne [11]. The

results are found to be in excellent agreement. The

comparison is shown in Figs. 2–5.

The variation of the surface shear stress (f 00ðn; 0Þ)
with time nð0 6 n 6 1Þ for the buoyancy assisting and

opposing flows (k1 ¼ �1) and for the PST case with

Pr ¼ 0:7, 7, 20, 60, n ¼ 1 (non-isothermal surface) is

shown in Fig. 2. At the start of the motion (n ¼ 0) the

buoyancy force (k1) and the Prandtl number (Pr) have

no effect on the surface shear stress (f 00ðn; 0Þ) and these

effects become pronounced with increasing time (n). The

Fig. 2. Variation of the surface shear stress (f 00ðn; 0Þ) with time

n for the PST case when k1 ¼ �1, 0, n ¼ 1, Pr ¼ 0:7, 7, 20, 60.

Fig. 3. Variation of the surface heat transfer (	h0ðn; 0Þ) with

time n for the PST case when k1 ¼ �1, n ¼ 1, Pr ¼ 0:7, 7, 20, 60.

Fig. 4. Variation of the surface shear stress (f 00ðn; 0Þ) with time

n for PHF case when k2 ¼ �1, n ¼ 1, Pr ¼ 7, 20, 60.
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steady-state is reached at n ¼ 1 (t� ! 1). There is a

smooth transition from the short-time solution to the

long-time solution. Similar trend has been observed by

Williams and Rhyne [11] for the forced flow on a wedge.

The surface shear stress (f 00ðn; 0Þ) increases with n, be-
cause, as mentioned earlier, the flow is dominated by the

convective acceleration for large n. For buoyancy as-

sisting flow (k ¼ 1), the effect of n becomes less pro-

nounced with increasing Pr, but the opposite trend is

observed for buoyancy opposing flow (k1 ¼ 	1). For

buoyancy assisting flow (k1 ¼ 1) and for Pr ¼ 0:7,
f 00ðn; 0Þ increases by about 202% as n increases from 0 to

1, but for buoyancy opposing flow (k1 ¼ 	1), it in-

creases by about 22%. On the other hand for Pr ¼ 20,

f 00ðn; 0Þ increases by about 156% for k1 ¼ 1 as n in-

creases from 0 to 1, but for k ¼ 	1 it increases by about

78%. For buoyancy assisting flow (k1 ¼ 1) and for n ¼ 1,

f 00ðn; 0Þ decreases with increasing Prandtl number Pr.

The reason for this trend is that the higher Prandtl

number implies more viscous fluid which increases the

boundary layer thickness and this causes reduction in

the shear stress. For n ¼ k1 ¼ n ¼ 1, f 00ðn; 0Þ decreases

by about 23% as Pr increases from 0.7 to 60. For

buoyancy opposing flow (k1 ¼ 	1), f 00ðn; 0Þ increases

with Pr. Similar trend has been observed by Rama-

chandran et al. [3]. For n ¼ n ¼ 1, k1 ¼ 	1, f 00ðn; 0Þ in-
creases by about 55% as Pr increases from 0.7 to 60.

Also for a fixed Pr, f 00ðn; 0Þ increases with the buoyancy

parameter k1 and this increase is more for the lower

Prandtl number. This increase is caused by the en-

hancement in the velocity due to the assisting buoyancy

force which acts like a favourable pressure gradient and

the effect of buoyancy force is more pronounced for the

lower Pr. When n ¼ n ¼ 1, Pr ¼ 0:7, f 00ðn; 0Þ increases

by about 145% as k1 increases from )1 to 1, but for

Pr ¼ 0:7 it increases by about 64%.

Fig. 3 presents the variation of the surface heat

transfer (	h0ðn; 0Þ) with time nð0 6 n 6 1Þ for buoy-

ancy assisting and opposing flows (k1 ¼ �1) and for

the PST case with Pr ¼ 0:7, 7, 20, 60, n ¼ 1. The sur-

face heat transfer changes little with n except when Pr

is large (Pr ¼ 60). For this case 	h0ðn; 0Þ decreases by

about 14% as n increases from 0 to 1. For a fixed time

n, 	h0ðn; 0Þ increases significantly with Pr, because the

higher Prandtl number fluid has a lower thermal con-

ductivity which results in thinner thermal buoyancy

layer and hence a higher heat transfer rate at the sur-

face. At n ¼ 0, 	h0ðn; 0Þ increases by about 700% as Pr

increases from 0.7 to 60 and at n ¼ 1 it is about 364%.

Similar trend has been observed for buoyancy opposing

flow (k1 ¼ 	1). Also for n > 0, heat transfer for the

buoyancy opposing flow is less than that of the buoy-

ancy assisting flow.

For PHF case the corresponding results for the sur-

face shear stress (f 00ðn; 0) and the reciprocal of the sur-

face temperature (1=hðn; 0Þ), which represents the

surface heat transfer for the PHF case, are presented in

Figs. 4 and 5, respectively. Since these results are qual-

itatively similar to those of the PST case, they are not

discussed here. For buoyancy assisting flow and for

n > 0, the surface shear stress and the surface heat

transfer for the PHF case are less than those of the PST

case, but for the buoyancy opposing flow the reverse

trend is observed. Similar trend is also observed by

Ramchandran et al. [3] for the steady case (n ¼ 1).

Fig. 6 displays the variation of the skin friction

coefficient (2	1Re1=2x cf ) and the Nusselt number

Fig. 6. Variation of the skin friction coefficient (2	1Re1=2x cf ) and
the Nusselt number (re1=2x Nu) with time n for the PST case when

k1 ¼ �1, Pr ¼ 7.

Fig. 5. Variation of the surface heat transfer (1=hðn; 0Þ) with

time n for PHF case when k2 ¼ �1, n ¼ 1, Pr ¼ 7, 20, 60.
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(Re	1=2
x Nu) with time n for the PST case when Pr ¼ 7,

k1 ¼ n ¼ 1. The corresponding results for the buoyancy

opposing flow and for the PHF case are qualitatively

similar to the above results. Hence they are not shown

here. Due to the impulsive motion the skin friction and

the heat transfer coefficients have large values for small

time after the start of the motion and they decrease

continuously and reach the steady-state values at

n ¼ 1ðt� ! 1Þ.
The variation of the surface shear stress (f 00ðn; 0Þ)

and the surface heat transfer (	h0ðn; 0Þ) with time n for

the PST case when the buoyancy parameter k1 ¼ 0, 5,

10, Pr ¼ 0:7, n ¼ 1 is shown in Fig. 7. The surface

shear stress and the heat transfer increase with k1, be-

cause positive buoyancy force acts like favourable

pressure gradient which accelerates the motion and

reduces both momentum and thermal boundary layers.

Hence both the surface shear stress and the surface

heat transfer are increased. For n ¼ 0:5, Pr ¼ 0:7,
n ¼ 1, f 00ðn; 0Þ and 	h0ðn; 0Þ increase by about 265%

and 46%, respectively, as k1 increases from 0 to 10. Fig.

7 also shows the surface heat transfer (	h0ðn; 0Þ) for

n ¼ 0 (isothermal surface), )0.5, k1 ¼ 10, Pr ¼ 0:7. For
isothermal case, the heat transfer is found to be less

(about 42%) than that of n ¼ 1 (non-isothermal case).

For n ¼ 	0:5, the time variation of the heat transfer is

very small. The surface shear stress (f 00ðn; 0Þ) is slightly
higher (about 7.5%) than that of n ¼ 1 when n ¼ 1.

Hence it is not shown in the figure. The reason for this

trend is that for n ¼ 0 the surface temperature differ-

ence (Tw 	 T1) is less than that of n ¼ 1. This results in

lower heat transfer for n ¼ 0 as compared to n ¼ 1.

Also, for gases (l / T ) reduction in surface tempera-

ture causes thinner boundary layer which in turn in-

creases the surface shear stress.

6. Conclusions

The surface shear stress and heat transfer, in gen-

eral, increase with time and there is a smooth transition

from the small-time solution to the large-time solution.

The surface shear stress and heat transfer for buoyancy

assisting flow are more than those of the buoyancy

opposing flow. The surface heat transfer increases with

increasing Prandtl number, but the surface shear stress

decreases for the buoyancy assisting flow and increases

for the buoyancy opposing flow. For buoyancy assist-

ing flow, the surface shear stress and heat transfer for

the prescribed surface heat flux are slightly less than

those of the prescribed surface temperature, but for the

buoyancy opposing flow the reverse trend is observed.

The surface heat transfer can considerably be reduced

by using a lower Prandtl number fluid. It can also be

reduced by imposing the buoyancy force in the oppo-

site direction to that of the forced flow or by main-

taining uniform temperature or heat flux on the

surface.
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